If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2=75x
We move all terms to the left:
50x^2-(75x)=0
a = 50; b = -75; c = 0;
Δ = b2-4ac
Δ = -752-4·50·0
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5625}=75$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-75)-75}{2*50}=\frac{0}{100} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-75)+75}{2*50}=\frac{150}{100} =1+1/2 $
| 4(8-r)+6=-2 | | 4x-11+6x-1=90 | | Y=-3.8x-5.1 | | 3/4n-8=17 | | P=(-0.3x0.71) | | 0.7(10x+21)=2.6(0.2x+5) | | 32x^2=128X | | 6x-1+4x+11+x=180 | | 6*p=36 | | (14x+19)=16x+3 | | 1/4(60+16x)=-5 | | 5(v-7)-7=-4(-8v+7)-9v | | w/18=-15 | | -6x•|=5 | | 6x+12-4x=60-6x | | 5(v-7)-7=-4(-8v=7)-9v | | -9s+18+4=-9s-6 | | (8x+14)+(13x−2)=180 | | 2-3{x+4=17 | | -6(2n+8)=-12n | | 183+(4x-8)+(3x-5)+(3x+20)=540 | | 183+(94x-8)+(3x-5)+(3x+20)=540 | | (t)=16t^2+320 | | -6h-9=-9-18h+12h | | 183+94x-8)+(3x-5)+(3x+20)=540 | | 375-31*21=a | | 6x2−5x+9=0 | | 4-6(2m-20)=-5m+19 | | –g+2(3+g)=–4(g+1 | | -9-9n+7=-2-9n | | C(x)=2x^2-200x+19,000 | | m-3/2=5/4 |